Neuronostatin acts in brain to biphasically increase mean arterial pressure through sympatho-activation followed by vasopressin secretion: the role of melanocortin receptors.
نویسندگان
چکیده
Neuronostatin is a recently described neuropeptide that is derived from the somatostatin preprohormone. We have shown previously that neuronostatin led to a biphasic, dose-related increase in mean arterial pressure when injected into the lateral cerebroventricle of adult, male rats. Because neuronostatin depolarized both magnocellular and parvocellular, paraventricular nucleus neurons in hypothalamic slice preparations, we hypothesized that neuronostatin elevated mean arterial pressure first by stimulating sympathetic nervous system activity followed by the release of a pressor hormone, specifically vasopressin. We found that the first phase of neuronostatin-induced increase in mean arterial pressure was reversed by pretreatment with phentolamine, indicating that phase 1 was, indeed, due to an increase in sympathetic activity. We also found that centrally injected neuronostatin led to a dose-related increase in vasopressin secretion in a time course consistent with the peak of the second phase. Furthermore, the second phase of arterial pressure elevation was reversed by pretreatment with a vasopressin 1 receptor antagonist, indicating that phase 2 was likely due to an increase in vasopressin secretion. We previously have shown that the anorexigenic and antidipsogenic effects of neuronostatin were reversed by pretreatment with the melanocortin 3/4 receptor antagonist, SHU9119, so we evaluated the ability of SHU9119 to reverse the effects of neuronostatin on MAP and vasopressin secretion. We found that SHU9119 abrogated the second phase of neuronostatin-induced increase in MAP and neuronostatin-induced vasopressin secretion, indicating that neuronostatin acts through the central melanocortin system to increase vasopressin release, ultimately leading to an elevation in MAP.
منابع مشابه
Increased synaptic activity in magnocellular neurons of supraoptic nucleus and plasma vasopressin levels due to acute administration of morphine in male rats
Introduction: The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) play a crucial role in control of physiological and pathophysiologiccal condition due to two peptides that they synthesize, i.e. Oxytocin (OXT) and Vasopressin (AVP). The activity of MCNs is regulated by a variety of excitatory and inhibitory inputs. Opioid receptors are one of the important receptors in SON synap...
متن کاملThe effect of glutaminergic system on cardiovascular regulation of rat
Introduction: The bed nucleus stria terminalis (BST) is a part of the limbic system, which plays a role in regulation of heart beat and blood circulation. It was recently shown that microinjection of L-glutamate in the BST elicits cardiovascular depressive, but the role of glutamate receptor subtypes has not been investigated yet. In this study, the role of glutamate receptor subgroups in regul...
متن کاملCopeptin,as a new Boimarker
everything that disturbs the homeostatic balance of the body can be defined as stress and any stress factor activating the hypothalamic- pituitary-adrenal (HPA) axis causes an increase in arginine vasopressin (AVP) plasma concentrations. AVP is a 9 amino acid peptide in the ring structure and derived from pre-pro vasopressin. Pre-pro vasopressin is a pro hormone that synthesized by supraoptic ...
متن کاملRole of the Paraventricular Nucleus of the Hypothalamus in the Sympathoexcitatory Effects of Leptin.
Leptin binds to receptors in multiple hypothalamic nuclei to increase sympathetic nerve activity; however, the neurocircuitry is unclear. Here, using anesthetized male Sprague-Dawley rats, we investigated the role of the paraventricular nucleus of the hypothalamus. Intracerebroventricular injection of leptin slowly increased lumbar sympathetic nerve activity (LSNA), heart rate, mean arterial pr...
متن کاملCortisol secretion in adult male rats
As a neurotransmitter or neuromodulator, brain histamine has a variety of physiological roles in brain functions such as hypothalamic- pituitary- adrenal (HPA) activity. Histamine induces the release of ACTH through the activation of hypothalamic neurons containing vasopressin and CRH. Histamine induces the activity of HPA axis directly or indirectly. Endogenous opioids modulate the (HPA) axis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 300 5 شماره
صفحات -
تاریخ انتشار 2011